The q- j_{α} Bessel Function

Ahmed Fitouhi and M. Moncef Hamza

Département de Mathématiques, Faculté des Sciences de Tunis, Tunis 1060, Tunisia

and

Fethi Bouzeffour

École Préparatoire aux Études d'Ingénieur, Mateur, Tunisia Communicated by Mourad Ismail

Received April 2, 2001; accepted in revised form September 12, 2001

In this paper we study the q-analogue of the j_{α} Bessel function (see (1)) which results after minor changes from the so-called Exton function studied by Koornwinder and Swarttow. Our objective is first to establish, using only the q-Jackson integral and the q-derivative, some properties of this function with proofs similar to the classical case; second to construct the associated q-Fourier analysis which will be used in a coming work to construct the q-analogue of the Besselhypergroup. © 2002 Elsevier Science (USA)

1. INTRODUCTION

The j_{α} Bessel function is defined by

$$j_{\alpha}(x) = 2^{\alpha} \Gamma(\alpha+1) x^{-\alpha} J_{\alpha}(x), \qquad (1)$$

where $J_{\alpha}(.)$ is the Bessel function of the first kind and of index α

$$J_{\alpha}(x) = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k! \, \Gamma(\alpha + k + 1)} \left(\frac{x}{2}\right)^{\alpha + 2k}.$$
 (2)

For λ complex, the function $j_{\alpha}(\lambda x)$ is the eigenfunction of the second-order singular differential equation

$$u'' + \frac{2\alpha + 1}{x}u' = -\lambda^2 u \tag{3}$$

$$u(0) = 1, \quad u'(0) = 0.$$
 (4)

0021-9045/02 \$35.00 © 2002 Elsevier Science (USA) All rights reserved.

$$(\mathbb{AP})$$

The Hankel transform is linked to the function j_{α} . During the last years many authors gave several possible q-analogues of J_{α} ; we cite those introduced by Jackson and denoted by M. E. Ismail as $J_{\alpha}^{(1)}(x;q)$ and $J_{\alpha}^{(2)}(x;q)$ and those given by Hahn and Exton and Koornwinder and Swarttow [16, 21] (following M. E. Ismail the Hahn–Exton q-Bessel functions are also due to Jackson). In his thesis, Swarttow exploiting the Hahn–Exton q-Bessel function and using an orthogonality relation involving the q-basic hypergeometric function studied the q-Bessel transform and its inverse formula. It is interesting to introduce this last transform in a similar way as the classical one [22].

In this paper we are concerned with the q-analogue of the j_{α} Bessel function (1). This choice is motivated in particular by the facilities in computation without leaving the context of [4, 7, 22, 23].

The reader will notice that the definition (35) derives from that given in [16] with minor changes. We are not in a situation to claim that the proofs of the properties of the q- j_{α} Bessel function are new but the methods used here to establish the q-integral representation of Mehler and Sonine type have a good resemblance with the classical ones. The q-differential second order difference operator (41) introduced in this paper has the q- j_{α} Bessel function (35) as an eigenfunction and is a limit case of the Bessel operator. With the help of the q-integral representation we define the q-transmutation operator $\chi_{\alpha,q}$ which is the q-analogue to the well-known Erdelyi–Koober operator. Combining $\chi_{\alpha,q}$ first with the q-even translation [8] and second with the q-cosine Fourier transform [8] we are able to define the q-Bessel translation and the q-Bessel transform and to establish easily some of their properties. Finally we initiate the study of the q-Bessel heat equation.

2. THE q- j_{α} BESSEL FUNCTION AND PRELIMINARIES

2.1. Preliminaries

We recall some usual notions and notations used in the q-theory; to deepen the following notions the reader can consult [1-3, 10, 17].

Let a and q be real numbers such that 0 < q < 1; the q-shifted factorials are defined by

$$(a;q)_k = (1-a)(1-aq)\cdots(1-aq^{k-1}), \qquad k = 1, 2, ...$$
 (5)

$$(a;q)_{-k} = \frac{1}{(aq^{-k};q)_k}, \qquad k = 1, 2, ...; \ a \neq q, q^2,$$
 (6)

We recall the following simple formulas

$$(a;q)_{2n} = (a;q^2)_n (aq;q^2)_n,$$
(7)

$$(a;q)_{n-k} = \frac{(a;q)_n}{(a^{-1}q^{1-n};q)_n} \left(-\frac{q}{a}\right)^k q^{\frac{k(k-1)}{2}-nk}.$$
(8)

The q-combinatorial coefficients are defined for n and k integers, $0 \le k \le n$, by

$$\binom{n}{k}_{q} = \frac{(q;q)_{n}}{(q;q)_{n-k}(q;q)_{k}},$$
(9)

and it is easy to have

$$(a;q)_{n} = \sum_{k=0}^{n} {n \brack k}_{q} q^{\frac{k(k-1)}{2}} (-a)^{k}.$$
 (10)

We also denote

$$(a_1, a_2, \dots, a_p; q)_n = (a_1; q)_n (a_2; q)_n \cdots (a_p; q)_n.$$
(11)

The q-hypergeometric function $_1\phi_1$ is important in this work; we summarize here some of its properties (see Koornwinder and Swarttouw [17]).

For $w, z \in \mathbf{C}$, the series

$$(w; q)_{\infty 1} \phi_1(0; w; q, z) = \sum_{k=0}^{\infty} \frac{(-1)^k q^{\frac{k(k-1)}{2}} (wq^k; q)_{\infty}}{(q; q)_k} z^k$$
(12)

defines an analytic function in w and z, which is symmetric in these variables in the following sense

$$(w; q)_{\infty 1} \phi_1(0; w; q, z) = (z; q)_{\infty 1} \phi_1(0; z; q, w)$$
(13)

and both sides of the last equation are majorized by

$$(-|z|; q)_{\infty} (-|w|; q)_{\infty}.$$
 (14)

Now for n integer and z complex we have

$$(q^{1-n};q)_{\infty 1}\phi_1(0;q^{1-n};q,z) = (-z)^n q^{\frac{n(n-1)}{2}}(q^{1+n};q)_{\infty 1}\phi_1(0;q^{1+n};q,zq^n);$$
(15)

if we take into account (12), we obtain

$$\left|\frac{(q^{1+n};q)_{\infty}}{(q;q)_{\infty}} \,_{1}\phi_{1}(0;q^{1+n};q,z)\right| \leq \frac{(-|z|,-q;q)_{\infty}}{(q;q)_{\infty}} \begin{cases} 1, & \text{if } n \geq 0\\ |z^{-n}| \, q^{n(n+1)/2} & \text{if } n \leq 0. \end{cases}$$
(16)

When we put $z = q^{1+k}$; $k \in \mathbb{Z}$, the symmetric relation (13) leads to

$$\left|\frac{(q^{1+n};q)_{\infty}}{(q;q)_{\infty}} {}_{1}\phi_{1}(0;q^{1+n};q,q^{1+k})\right| \leq \frac{(-q^{n},-q;q)_{\infty}}{(q;q)_{\infty}} \begin{cases} 1 & \text{if } k \geq 0\\ q^{-kn}q^{\frac{k(k-1)}{2}} & \text{if } k \leq 0. \end{cases}$$

The q-derivative $D_q f$ of a function f on an open interval is given by

$$(D_q f)(x) = \frac{f(x) - f(qx)}{(1 - q)x}, \qquad x \neq 0$$
(17)

and $(D_q f)(0) = f'(0)$ provided f'(0) exists.

If f is differentiable then $(D_q f)(x)$ tends to f'(x) as $q \to 1^-$. The following identities can be obtained from (17).

For $a \in C$ and n = 0, 1, ... we have

$$D_{q}^{n}[f(ax)] = a^{n}(D_{q}^{n}f)(ax),$$
(18)

$$D_q^n f(x) = \frac{(-1)^n}{x^n (1-q)^n} \sum_{k=0}^n (-1)^k {n \brack k}_q q^{\frac{-(n-k)(n-k-1)}{2}} f(q^{n-k}x), \quad (19)$$

$$D_{q}^{n}(f(x) g(x)) = \sum_{k=0}^{n} {n \brack k}_{q} D_{q}^{n-k} f(q^{k}x) D_{q}^{k} g(x).$$
(20)

The q-Jackson integrals from 0 to a and from 0 to ∞ are defined by

$$\int_{0}^{a} f(x) d_{q} x = (1-q) a \sum_{n=0}^{\infty} f(aq^{n}) q^{n}$$
(21)

$$\int_{0}^{\infty} f(x) d_{q} x = (1-q) \sum_{-\infty}^{\infty} f(q^{k}) q^{k}, \qquad (22)$$

provided the sums converge absolutely.

Let us denote by S_q the set

$$S_q = \{q^k; k \in Z\}.$$
(23)

For $n \in Z$ and $a \in S_q$ we have

$$\int_{0}^{\infty} f(q^{n}x) d_{q}x = \frac{1}{q^{n}} \int_{0}^{\infty} f(x) d_{q}x$$
(24)

$$\int_{0}^{a} f(q^{n}x) d_{q}x = \frac{1}{q^{n}} \int_{0}^{aq^{n}} f(x) d_{q}x.$$
 (25)

The q-integration by parts is given for suitable functions f and g by

$$\int_0^\infty f(x) D_q g(x) d_q x = [f(x) g(x)]_0^\infty - \int_0^\infty D_q(f(q^{-1}x)) g(x) d_q x.$$
(26)

Jackson [15] defined the q-analogue of the Gamma function as

$$\Gamma_q(x) = \frac{(q;q)_{\infty}}{(q^x;q)_{\infty}} (1-q)^{1-x}, \qquad 0 < q < 1; x \neq 0, -1, -2, \dots.$$
(27)

It satisfies the functional equation

$$\Gamma_q(x+1) = \frac{q^x - 1}{q - 1} \Gamma_q(x), \qquad \Gamma_q(1) = 1$$
(28)

and tends to $\Gamma(x)$ when q tends to 1⁻; moreover the q-duplication formula holds

$$\Gamma_q(2x) \Gamma_{q^2}(\frac{1}{2}) = (1+q)^{2x-1} \Gamma_{q^2}(x) \Gamma_{q^2}(x+\frac{1}{2}).$$
⁽²⁹⁾

The q-Beta function is defined by

$$\beta_q(x, y) = \int_0^1 t^{x-1} \frac{(tq; q)_\infty}{(tq^y; q)_\infty} d_q t, \qquad x > 0, \, y > 0,$$
(30)

$$= (1-q) \sum_{n=0}^{\infty} \frac{(q^{n+1}; q)_{\infty}}{(q^{n+y}; q)_{\infty}} q^{ny};$$
(31)

and we have

$$\beta_q(x, y) = \frac{\Gamma_q(x) \Gamma_q(y)}{\Gamma_q(x+y)}.$$
(32)

2.2. The q- j_{α} Bessel function

We recall the following definition of the q-trigonometric functions

$$\cos(x;q^2) = \sum_{n=0}^{\infty} (-1)^n q^{n(n-1)} \frac{(1-q)^{2n}}{(q;q)_{2n}} x^{2n} = \sum_{n=0}^{\infty} (-1)^n b_n(x;q^2); \quad (33)$$

$$\sin(x;q^2) = \sum_{k=0}^{\infty} (-1)^k q^{k(k-1)} \frac{(1-q)^{2k+1}}{(q;q)_{2k+1}} x^{2k+1}.$$
 (34)

We define the q- j_{α} Bessel function by

$$j_{\alpha}(x;q^2) = \Gamma_{q^2}(\alpha+1) \sum_{n=0}^{\infty} (-1)^n \frac{q^{n(n-1)}}{\Gamma_{q^2}(\alpha+n+1) \Gamma_{q^2}(n+1)} \left(\frac{x}{1+q}\right)^{2n}.$$
 (35)

$$=\sum_{n=0}^{\infty} (-1)^n b_{n,\alpha}(x;q^2),$$
(36)

where

$$b_{n,\alpha}(x;q^2) = b_{n,\alpha}(1;q^2) x^{2n} = \frac{\Gamma_{q^2}(\alpha+1) q^{n(n-1)}}{(1+q)^{2n} \Gamma_{q^2}(n+1) \Gamma_{q^2}(\alpha+n+1)} x^{2n}$$
(37)

and

$$b_{n,-1/2}(x;q^2) = b_n(x;q^2).$$
 (38)

The q- j_{α} Bessel function $j_{\alpha}(x; q^2)$ is defined on **R** and tends to the j_{α} Bessel function (1) as $q \to 1^-$.

By simple computation using (27) and (29) we obtain

$$j_{-1/2}(x;q^2) = \cos(x;q^2),$$
 (39)

$$j_{1/2}(x;q^2) = \frac{\sin(x;q^2)}{x}.$$
(40)

We introduce the q-Bessel operator

$$\begin{aligned} \Delta_{q,\alpha} f(x) &= \frac{1}{x^{2\alpha+1}} D_q [x^{2\alpha+1} D_q f](q^{-1}x) \\ &= q^{2\alpha+1} \Delta_q f(x) + \frac{1 - q^{2\alpha+1}}{(1-q) q^{-1}x} D_q f(q^{-1}x), \end{aligned}$$
(41)

where

$$\Delta_{q} f(x) = (D_{q}^{2} f)(q^{-1} x).$$
(42)

PROPOSITION 1. The function $j_{\alpha}(\lambda x; q^2)$, λ being complex, is the solution of the q-problem

$$\Delta_{q,\alpha} y(x) + \lambda^2 y(x) = 0 \tag{43}$$

$$y(0) = 1, \quad y'(0) = 0.$$
 (44)

The proof is straightforward.

3. q-INTEGRAL REPRESENTATIONS

In this section we give two q-integral representations of the q- j_{α} Bessel function (35) involving the q-Jackson integral.

3.1. q-Mehler Type

We introduce and denote by W_{α} the q-binomial function

$$W_{\alpha}(x;q^2) = \frac{(x^2q^2;q^2)_{\infty}}{(x^2q^{2\alpha+1};q^2)_{\infty}} = {}_1\phi_1(q^{1-2\alpha},-,q^2,x^2q^{2\alpha+1}),$$
(45)

which tends to $(1-x^2)^{\alpha-1/2}$ as $q \to 1^-$.

THEOREM 1. For $\alpha \neq -1/2, -1, -3/2, ...,$ the $q-j_{\alpha}$ Bessel function has the following q-integral representation of Mehler type

$$j_{\alpha}(x;q^2) = (1+q) C(\alpha;q^2) \int_0^1 W_{\alpha}(t;q^2) \cos(xt;q^2) d_q t, \qquad (46)$$

where W_{α} is given by (45) and

$$C(\alpha; q^2) = \frac{\Gamma_{q^2}(\alpha+1)}{\Gamma_{q^2}(1/2)\,\Gamma_{q^2}(\alpha+1/2)}.$$
(47)

Remark that when $q \rightarrow 1^-$ and $\alpha > -1/2$ the formula (46) tends to the classical Mehler formula

$$j_{\alpha}(x) = \frac{2\Gamma(\alpha+1)}{\sqrt{\pi}\,\Gamma(\alpha+1/2)} \int_{0}^{1} (1-t^{2})^{\alpha-1/2} \cos(xt) \, dt$$

150

Proof. Using the expansion (33) of $cos(xt; q^2)$ we turn up to compute the integral

$$I_k = \int_0^1 \frac{(t^2 q^2; q^2)_\infty}{(t^2 q^{2\alpha+1}; q^2)_\infty} t^{2k} d_q t.$$

For this end we use the identity

$$\int_0^1 f(t) \, d_{q^2} t = \int_0^1 f(u^2) \, D_q u^2 \, d_q u$$

which implies

$$\beta_{q^2}(x, y) = \frac{\Gamma_{q^2}(x) \Gamma_{q^2}(y)}{\Gamma_{q^2}(x+y)} = (1+q) \int_0^1 t^{2x-1} \frac{(t^2 q^2; q^2)_\infty}{(t^2 q^{2y}; q^2)_\infty} d_q t$$

therefore

$$I_{k} = \frac{1}{1+q} \frac{\Gamma_{q^{2}}(\alpha+1/2) \Gamma_{q^{2}}(k+1/2)}{\Gamma_{q^{2}}(\alpha+k+1)}.$$

Finally, the use q-duplication formula (29)

$$(1+q)^{2k-1} \Gamma_{q^2}(k+1) \Gamma_{q^2}(k+1/2) = \frac{1}{(1+q)} (q;q)_{2k} (1-q)^{-2k} \Gamma_{q^2}(1/2)$$

leads to the result. The computation is legitimated by the fact that the series

$$\sum_{0}^{\infty} q^{k(k-1)} \frac{(1-q)^{2k}}{(q;q)_{2k}} I_k x^{2k}$$

converges uniformly on every compact.

COROLLARY 1. For $q \in S_q$ and $\frac{\ln(1-q)}{\ln(q)} \in \mathbb{Z}$ we have the estimations

$$|j_{\alpha}(x;q^2)| \leq \frac{1}{(q;q^2)_{\infty}^2}, \qquad \alpha > -1/2.$$
 (48)

$$|D_q j_\alpha(x; q^2)| \leq \frac{1-q}{1-q^{2\alpha+2}} \cdot \frac{1}{(q; q^2)_\infty^2} x, \qquad x \in S_q, \, \alpha > -1/2$$
(49)

The inequality (48) is a consequence of (46) and the fact that $\cos(x; q^2) \le 1/(q; q^2)_{\infty}^2$ (see [8]).

To prove the second inequality, we note that from (43) we have

$$D_q j_{\alpha}(x; q^2) = \frac{1}{x^{2\alpha+1}} \int_0^x t^{2\alpha+1} j_{\alpha}(qt; q^2) d_q t$$

and

$$\int_0^x t^{2\alpha+1} d_q t = \frac{1-q}{1-q^{2\alpha+2}} x^{2\alpha+2}.$$

The result follows then by (48).

It is established that the Bessel function and the Gegenbauer polynomials are linked by the so-called Gegenbauer integral representation (Watson [24]) which can be rewritten for the Bessel function j_{α} as

$$j_{\alpha+2n}(x) = K(n,\alpha) \int_0^1 (1-t^2)^{\alpha-1/2} C_{2n}^{\alpha}(t) \cos(xt) dt,$$
 (50)

with

$$K(n, \alpha) = \frac{2^{2n+1}(-1)^n}{x^{2n}} \frac{(2n)! \, \Gamma(2\alpha) \, \Gamma(\alpha+2n+1)}{\sqrt{\pi} \, \Gamma(\alpha+1/2) \, \Gamma(2\alpha+2n)}$$

and where $C_n^{\alpha}(t)$ is the Gegenbauer polynomial. Owing to the q-Mehler integral representation (50) we are able to give the q-analogue of the previous representation.

PROPOSITION 2. The q- j_{α} Bessel function $j_{\alpha+2n}(x; q^2)$ has the q-Gegenbauer integral representation

$$j_{\alpha+2n}(x;q^2) = K(n,\alpha;q^2) \int_0^1 W_{\alpha}(t;q^2) \,\tilde{C}_{2n}^{\alpha}(t;q^2) \cos(xtq^{-n};q^2) \,d_q t, \quad (51)$$

with

$$K(n, \alpha; q^2) = \frac{(1+q)(-1)^n \Gamma_{q^2}(\alpha+2n+1)}{x^{2n} \Gamma_{q^2}(1/2) \Gamma_{q^2}(\alpha+2n+1/2)} \frac{\Gamma_{q^2}(2\alpha+2n+2)}{q^{n^2-n} \Gamma_{q^2}(2\alpha+2)}$$

and where

$$\tilde{C}_{n}^{\alpha}(x;q^{2}) = \tilde{P}_{n}^{(\alpha-1/2,\,\alpha-1/2)}(x,q^{\alpha-1/2},q^{\alpha-1/2},1,1;q),$$
(52)

 $\tilde{P}_{n}^{(\alpha,\beta)}(x,a,b,c,d;q)$ being the big q-Jacobi polynomial (see [16]).

To show (51), we recall the useful properties

(i)
$$W_{\alpha}(\pm q^{-1}; q^2) = 0$$

(ii)
$$D_q \tilde{C}_n^{\alpha}(x; q^2) = \frac{1-q^n}{1-q} \tilde{C}_n^{\alpha+1}(x; q^2)$$

(iii)
$$\frac{1}{W_{\alpha}(x;q^2)} D_q^+ [W_{\alpha+1}(x;q^2) \tilde{C}_{n-1}^{\alpha+1}(x;q^2)] = \frac{q^{2\alpha+1} - q^{-n+1}}{1-q} \tilde{C}_n^{\alpha}(x;q^2),$$

where

$$D_q^+ f(x) = \frac{f(q^{-1}x) - f(x)}{(1-q)x}.$$
(53)

We start by integrating by parts the formula (46). Properties (i) and (iii) lead, since $D_{q,t}(\sin(xt;q^2)) = x \cos(xt;q^2)$ after the change α by $\alpha + 1$, to

$$j_{\alpha+1}(x;q^2) = \frac{1+q}{x} \frac{\Gamma_{q^2}(\alpha+2) \Gamma_{q^2}(2\alpha+4)}{\Gamma_{q^2}(1/2) \Gamma_{q^2}(\alpha+1+1/2) \Gamma_{q^2}(2\alpha+3)}$$
$$\times \int_0^1 \tilde{C}_1^{\alpha}(t;q^2) W_{\alpha}(t;q^2) \sin(xt;q^2) d_q.$$

By the use of relation (iii) and the fact that $\tilde{C}_1^{\alpha}(0; q^2) = 0$ we find that

$$j_{\alpha+2}(x;q^2) = -\frac{(1-q)\,\Gamma_{q^2}(\alpha+3)\,\Gamma_{q^2}(2\alpha+4)}{x^2\Gamma_{q^2}(1/2)\,\Gamma_{q^2}(\alpha+2+1/2)\,\Gamma_{q^2}(2\alpha+2)} \\ \times \int_0^1 \frac{1-q^{2\alpha+1}}{1-q} D_q^+ [W_\alpha(\alpha;q^2)\,\tilde{C}_1^\alpha(t;q^2)]\,d_q t,$$

that is, the relation (51) for n = 1; the result follows then by induction.

3.2. q-Sonine Type

THEOREM 2. For $\alpha > -1/2$ and $p \ge 1$, the $q \cdot j_{\alpha+p}$ Bessel function has the *q*-integral representation of Sonine type

$$j_{\alpha+p}(x;q^2) = \frac{(1+q)\,\Gamma_{q^2}(\alpha+p+1)}{\Gamma_{q^2}(1/2)\,\Gamma_{q^2}(p)} \int_0^1 t^{2\alpha+1} W_{p-1}(t;q^2)\,j_\alpha(xt;q^2)\,d_qt.$$
(54)

The limit case of the previous formula , as $q \to 1^-$, is the known Sonine integral for the $j_{\alpha+p}$ Bessel function

$$j_{\alpha+p}(x) = \frac{2\Gamma(\alpha+p+1)}{\Gamma(\alpha+1)\Gamma(p)} \int_0^1 t^{2\alpha+1} (1-t^2)^{p-1} j_\alpha(xt;q^2) dt.$$

To prove (54) we replace $j_{\alpha}(xt; q^2)$ by its expansion (35) in the integral and the fact that

$$(1+q)\int_0^1 t^{2\alpha+2k+1} \frac{(t^2q^2; q^2)_{\infty}}{(t^2q^{2p}; q^2)_{\infty}} d_q t = \frac{\Gamma_{q^2}(\alpha+k+1)\Gamma_{q^2}(p)}{\Gamma_{q^2}(\alpha+k+p+1)}.$$

The justification of the computation is similar then to Theorem 1.

4. q-TRANSMUTATION

We intend to solve the q-integral equation defined on the S_q by

$$(1+q) C(\alpha; q^2) \int_0^1 W_\alpha(t; q^2) f(xt) d_q t = g(x),$$
 (55)

where $C(\alpha; q^2)$ is given by (47), f is the unknown function, g a given suitable function and W_{α} the q-binomial function (45).

When $q \rightarrow 1^-$ this last equation is reduced to the well known Abel integral equation.

THEOREM 3. The solution of the q-integral equation (55) is given as follows

(1) If $\alpha \neq k+1/2$, $k \in \mathbb{Z}$ we have

$$f(x) = \frac{\Gamma_{q^2}(1/2)}{\Gamma_{q^2}(\alpha+1)\,\Gamma_{q^2}(-\alpha+1/2)}\,D_{q,x}\left[\,x\int_0^1\frac{(t^2q^2;q^2)_\infty}{(t^2q^{-2\alpha+1};q^2)_\infty}\,g(xt)\,t^{2\alpha+1}\,d_qt\,\right].$$
(56)

(2) If
$$\alpha = k + 1/2$$
, $k \in \mathbb{Z}$ we have

$$f(x) = \frac{(1-q)^k}{(q;q^2)_k} D_{q,x} \left[\frac{1}{x} D_{q,x}\right]^k (x^{2k+2}g(x)).$$
(57)

Proof. (1) If $\alpha \neq k+1/2$, $k \in \mathbb{Z}$, we put

$$g(x) = \frac{(1+q) \Gamma_{q^2}(\alpha+1)}{\Gamma_{q^2}(1/2) \Gamma_{q^2}(\alpha+1/2)} \int_0^1 \frac{(t^2 q^2; q^2)_{\infty}}{(t^2 q^{2\alpha+1}; q^2)_{\infty}} f(xt) d_q t.$$

so

$$x \int_{0}^{1} u^{2\alpha+1} \frac{(u^{2}q^{2}; q^{2})_{\infty}}{(u^{2}q^{-2\alpha+1}; q^{2})_{\infty}} g(ux) d_{q} u = \frac{(1+q)(1-q)^{2} \Gamma_{q^{2}}(\alpha+1)}{\Gamma_{q^{2}}(1/2) \Gamma_{q^{2}}(\alpha+1/2)} x$$
$$\times \sum_{n,m} q^{(2\alpha+1)n} \frac{(q^{2n+2}; q^{2})_{\infty}}{(q^{2n-2\alpha+1}; q^{2})_{\infty}} \frac{q^{2m+2}; q^{2})_{\infty}}{(q^{2m+2\alpha+1}; q^{2})_{\infty}} f(xq^{n+m}) q^{n+m}$$

provided the double series converges absolutely.

When we make the change k = n + m the second member becomes

$$\frac{(1+q)(1-q^2)\,\Gamma_{q^2}(\alpha+1)}{\Gamma_{q^2}(1/2)\,\Gamma_{q^2}(\alpha+1/2)}\,x\sum_{k=0}^{\infty}\,q^kf(xq^k)\,A(\alpha,k)$$

with

$$A(\alpha, k) = \sum_{n=0}^{k} q^{(2\alpha+1)n} \frac{(q^{2n+2}; q^2)_{\infty}}{(q^{2n-2\alpha+1}; q^2)_{\infty}} \frac{(q^{2k-2n+2}; q^2)_{\infty}}{(q^{2k-2n+2\alpha+1}; q^2)_{\infty}}.$$

The q-binomial formula (9) gives that

$$A(\alpha, k) = \frac{(q^2; q^2)_{\infty}^2}{(q^{-2\alpha+1}; q^2)_{\infty} (q^{2\alpha+1}; q^2)_{\infty}}.$$

Since $A(\alpha, k)$ can be rewritten in terms of the q-Gamma function we deduce the result.

(2) If $\alpha = k + 1/2$, $k \in N$, the *q*-integral equation reduces to

$$g(x) = \frac{(1+q) \Gamma_{q^2}(\alpha+1)}{\Gamma_{q^2}(1/2) \Gamma_{q^2}(\alpha+1/2)} \int_0^1 (t^2 q^2; q^2)_k f(xt) d_q t$$

which can be written

$$xg(x) = \frac{(q;q^2)_k}{(q^2;q^2)_k} \int_0^{x/q} \left(q^2 \frac{t^2}{x^2};q^2\right)_k f(t) \, d_q t$$

We introduce the functions

$$F_0(t) = f(t)$$

$$F_k(t) = t \int_0^t F_{k-1}(u) \, d_q u, \qquad k = 1, 2, \dots$$

By k-integrations by parts we obtain

$$xg(qx) = \frac{(q; q^2)_k}{(1-q)^k (x)^{2k}} \int_0^x F_k(t) d_q t.$$

Hence

$$F_k(x) = \frac{(1-q)^k}{(q;q^2)_k} D_{q,x} [x^{2k+1}g(x)]$$

and then

$$f(x) = \frac{(1-q)^k}{(q;q^2)_k} \mathcal{D}_{q,x}^{k+1} [x^{2k+2}g(x)],$$

where we have put $\mathcal{D}_{q,x}[\frac{1}{x}]$.

Now we consider the sets

$$\hat{S}_q = \{ \pm q^k, q \in \mathbb{Z} \} \cup \{0\}, \qquad \tilde{S}_q = S_q \cup \{0\}$$
 (58)

where S_q is given by (23) and we design by $\mathcal{D}_{*,q}$ the space of functions defined in \tilde{S}_q which are the restriction of the even function with compact support in \hat{S}_q . This space is equipped with the topology of uniform convergence.

For $\alpha \neq -1/2, -1, -3/2, ...$ and $f \in \mathcal{D}_{*,q}$, we define the q-analogue of the Kober–Erdelyi transform by

$$\chi_{\alpha,q}(f)(x) = C(\alpha;q^2) \frac{1+q}{x} \int_0^x W_\alpha\left(\frac{t}{x};q^2\right) f(xt) d_q t, \qquad x \neq 0$$
(59)

$$\chi_{\alpha,\,q}(f)(0) = f(0) \tag{60}$$

where $C(\alpha; q^2)$ and W_{α} are given respectively by (47) and (45).

THEOREM 4. The operator $\chi_{\alpha,q}$ is an isomorphism on $\mathcal{D}_{*,q}$ with inverse given by (56) and Proposition 3. Moreover, it transmutes the q-operator $\Delta_{q,\alpha}$ and Δ_q in the following sense:

$$\Delta_{q,\,\alpha}\chi_{\alpha,\,q} = \chi_{\alpha,\,q}\Delta_{q}.\tag{61}$$

When q tends to 1⁻, the operator $\chi_{\alpha,q}$ tends to the Kober–Erdelyi operator [12].

Proof. Let f be a function of $\mathscr{D}_{*,q}$; then there exists $g: \hat{S}_q \to \mathbb{C}$ even and with compact support such that $g(x) = f(x), x \in \tilde{S}_q$. We have

$$\chi_{\alpha,q}(f)(x) = \chi_{\alpha,q}(g)(x);$$

therefore if $x \notin \operatorname{supp}(g)$ then $\chi_{\alpha,q}(f)(x) = 0$, and the q-integral equation

$$\chi_{\alpha,q}(f) = h, \qquad h \in \mathscr{D}_{*,q}$$

has a unique solution in $\mathcal{D}_{*,q}$.

For $x \in S_q$ we put

$$\Lambda(x) = \frac{1}{(1+q) C(\alpha; q^2)} (\Delta_{q, \alpha} \chi_{\alpha, q}(f) - \chi_{\alpha, q} \Delta_q(f))(x).$$

We have

$$\begin{split} \Lambda(x) &= -\int_0^1 (1-t^2) \, W_\alpha(t; \, q^2) \, \varDelta_q \, f(xt) \, d_d t \\ &+ \frac{1-q^{2\alpha+1}}{1-q} \frac{q}{x} \int_0^1 W_\alpha(t; \, q^2) \, \varDelta_q \, f(xt) \, d_q t. \end{split}$$

Integration by parts gives that the first integral of the second member of this last equality becomes

$$-\left[(1-t^2)W_{\alpha}(t;q^2)\frac{q}{x}D_qf(xt)\right]_0^1+\int_0^1 D_q[(1-t^2)W_{\alpha}(t;q^2)]\frac{q}{x}D_qf(xt)d_qt.$$

Taking account of the fact that

$$D_q[(1-t^2) W_{\alpha}(t;q^2)] = -\frac{1-q^{2\alpha+1}}{1-q} t W_{\alpha}(t;q^2)$$

and $D_q f(0) = 0$, we obtain that the previous quantity is equal to

$$\frac{1-q^{2\alpha+1}}{1-q}\int_0^1 qt x^{-1} W_{\alpha}(t;q^2)\,\delta_q\,f(xt)\,d_qt.$$

This gives $\Lambda(x) = 0, x \in S_q$.

To find the q-analogue to the Weyl transform [23], we begin by defining the q-Jackson integral on (a, ∞) by

$$\int_{a}^{\infty} f(t) \, d_{q}t = \int_{0}^{\infty} f(t) \, d_{q}t - \int_{0}^{a} f(t) \, d_{q}t = (1-q) \, a \sum_{-\infty}^{-1} f(aq^{k}) \, q^{k}, \quad (62)$$

provided the series converges.

For $f \in \mathcal{D}_{*,q}$ and $\alpha \neq -1/2, -1, -3/2, ...$, we define the *q*-transpose of $\chi_{\alpha,q}$ by

$${}^{t}\chi_{\alpha,q}(f)(x) = \frac{q(1+q^{-1})^{-\alpha+1/2}\Gamma_{q^{2}}(\alpha+1)}{\Gamma_{q^{2}}^{2}(\alpha+1/2)} \int_{qx}^{\infty} W_{\alpha}\left(\frac{x}{t},q^{2}\right) f(t) t^{2\alpha} d_{q}t.$$
(63)

Simple computation leads, for $f, g \in \mathcal{D}_{*,q}$, to

$$\frac{(1+q^{-1})^{-\alpha}}{\Gamma_{q^2}(\alpha+1/2)}\int_0^\infty \chi_{\alpha,q}(f)(x)\,g(x)\,x^{2\alpha+1}\,d_qx = \frac{(1+q^{-1})^{1/2}}{\Gamma_{q^2}(1/2)}\int_0^\infty f(x)^t\,\chi_{\alpha,q}(g)\,d_qx.$$

PROPOSITION 3. The q-transposed operator ${}^{t}\chi_{\alpha,q}$ is an isomorphism on $\mathcal{D}_{*;q}$ moreover,

(1) if $\alpha \neq k + \frac{1}{2}$, $k \in \mathbb{Z}$, and $\alpha \notin \mathbb{Z}_{-}$

$${}^{t}\chi_{\alpha,q}^{-1}(f)(x) = \frac{(1+q)^{\alpha+1/2} \Gamma_{q^{2}}(\alpha+1/2)}{\Gamma_{q^{2}}(\alpha+1) \Gamma_{q^{2}}(-\alpha+1/2) x^{2\alpha+1}} \\ \times \frac{1}{x} D_{q,x}^{+} \left[\int_{qx}^{\infty} W_{-\alpha}\left(\frac{x}{t};q^{2}\right) f(t) t^{-2\alpha} d_{q}t \right];$$
(64)

(2) if $\alpha = k + \frac{1}{2}, k \in \mathbb{N}$

$${}^{t}\chi_{\alpha,q}^{-1}(f)(x) = q^{k-1}(1+q)^{2k} \frac{\Gamma_{q^{2}}(k+1)}{\Gamma_{q^{2}}(k+3/2)} \left(\frac{1}{x} D_{q}^{+}\right)^{k+1} (f(x)), \quad (65)$$

where D_q^+ is given by (53).

To prove the result we proceed as in Theorem 3 by taking account of the q-Jackson integral on (a, ∞) .

5. q-BESSEL TRANSLATION AND q-BESSEL CONVOLUTION

In the literature many methods are used to establish the generalized translation associated with the Bessel operator (3); we select the one deduced by the product formulas [7, 20] and those built with the transmutation operator. In this section we study the *q*-analogue of these last methods and we show that they are equivalent.

PROPOSITION 4. For n = 0, 1, 2, ..., there exists a sequence $U_k(n)$ satisfying

$$U_k(n+1) = q^{2n+1}U_{k+1}(k) + (q+q^{2\alpha+1}U_k(n) + q^{-2n+2\alpha+1}U_{k-1}(n).$$
(66)

$$U_k(n) = 0$$
 if $|k| > n$. (67)

and

$$\Delta_{q,\alpha}^{n}f(x) = \frac{1}{(1-q)^{2n}} \frac{1}{q^{-n}x^{2n}} \sum_{k=-n}^{n} (-1)^{n-k} U_{k}(n) f(q^{k}x).$$
(68)

Proof We proceed by induction on n. If n = 1, the definition (41) gives

$$\Delta_{q,\alpha} f(x) = \frac{1}{(1-q)^2 q^{-1} x^2} \left\{ q f(q^{-1}x) - (q+q^{2\alpha+1}) f(x) + q^{2\alpha+1} f(qx) \right\}$$

so the identities are true with $U_{-1}(1) = q$, $U_0(1) = q + q^{2\alpha+1}$, and $U_1(1) = q^{2\alpha+1}$. Suppose that (66), (67), and (68) hold for *n*, so that

$$\Delta_{q,\alpha}^{n+1} = \frac{1}{(1-q)^{2n} q^{-1} x^2} \sum_{k=-n}^{k=n} (-1)^{n-k} U_k(n) \Delta_{q,\alpha} \left(\frac{f(q^k x)}{x^{2n}}\right)$$

and

$$\Delta_{q,\alpha}^{n+1}f(x) = \frac{1}{(1-q)^{2n}q^{-n}x^2} \sum_{k=-n}^{n} (-1)^{n-k} U_k(n) \Delta_{q,\alpha}\left(\frac{f(q^k x)}{x^{2n}}\right).$$

Since

$$\begin{aligned} \mathcal{\Delta}_{q,\alpha}\left(\frac{f(q^{k}x)}{x^{2n}}\right) &= \frac{1}{(1-q)^{2n} q^{-1} x^{2}} \left[q \, \frac{f(q^{k-1}x)}{(q^{-1}x)^{2n}} - (q+q^{2\alpha+1}) \, \frac{f(q^{k}x)}{x^{2n}} \right. \\ &+ q^{2\alpha+1} \frac{f(q^{k+1}x)}{(qx)^{2n}} \left] \end{aligned}$$

the result follows.

Adopting the Cholewinsky terminology [5], the quantities $U_k(n)$ are called the q-binomial coefficients related with the q-Bessel operator (41). For *n* and *k* integers, we put

$$\psi_n(z) = \sum_{k=-n}^n U_k(n) z^n$$
, and $\phi_k(z) = \sum_{n \ge |k|} U_k(n) z^k q$.

The relation (10) gives

$$\psi_n(z) = q^n(-z; q^2)_n \left(-\frac{q^{2\alpha}}{z}; q^{-2}\right)_n = q^{n(2\alpha+1-n)} (-z; q^2)_n (-zq^{-2\alpha}; q^2)_n z^{-n}.$$

Using (66), we state

$$U_{k}(n) = q^{k(k-1)+2n(k+\alpha)} \sum_{p=0}^{k} {n \brack p}_{q^{2}} {n \brack n+k-p}_{q^{2}} q^{-2p(n+k+\alpha)}.$$
 (69)

The functions $\phi_k(z)$ satisfy

$$[1-(q+q^{2\alpha+1}]\phi_k(z)=qz[\phi_{k+1}(q^2z)+q^{2\alpha}\phi_{k-1}(q^{-2}z)].$$

For $f \in \mathcal{D}_{*,q}$, we define the q-generalized Bessel translation by

$$T_x^{\alpha}(f)(y) = \sum_{n=0}^{\infty} \frac{q^{n^2}}{(q^2; q^{2\alpha+2}; q^2)_n} \left(\frac{x}{y}\right)^{2n} \sum_{k=-n}^n (-1)^{n-k} U_k(n) f(q^k y).$$
(70)

Remark. If $\alpha = -1/2$ we have $U_k(n) = q^{-n^2 + n + \binom{n-k}{2}}(q;q)_{2n}/(q;q)_{n-k}$ $(q;q)_{n+k}$, and $T_x^{-1/2} f(y)$ is the q-even translation studied in [8].

Let us now show that the q-generalized translation T_x^{α} , (70), can be written with the help of the *q*-transmutation operator.

PROPOSITION 5. Let $f \in \mathcal{D}_{*,q}$ and $T_x^{-1/2}$ be the q-even translation [8]. Then the q-generalized Bessel translation is related to the q-transmutation operator by

$$T_{x}^{\alpha}f(y) = \chi_{\alpha, q, x}\chi_{\alpha, q, y}(T_{q, x}^{-1/2}\chi_{\alpha, q, y}^{-1}(f)(y)),$$
(71)

where $\chi_{\alpha,q}$ and $\chi_{\alpha,q}^{-1}$ are given respectively by (59) and Theorem 3.

Proof. The *q*-Bessel translation can be rewritten

$$T_{x}^{\alpha}f(y) = \sum_{n=0}^{\infty} b_{n,\alpha}(x;q^{2}) \Delta_{q,\alpha}^{n}(f)(y)$$

= $\sum_{n=0}^{\infty} \chi_{\alpha,q,x}(b_{n}(x,q^{2})) \Delta_{q,\alpha}^{n}\chi_{\alpha,q,y}(\chi_{\alpha,q,y}f)(y),$
= $\chi_{\alpha,q,x}\chi_{\alpha,q,y(\sum_{n=0}^{\infty})}b_{n}(x;q^{2}) \Delta_{q}^{n}(\chi_{\alpha,y}^{-1}f)(y).$

Taking into account the definition of the q-even translation $T_q^{-1/2}$ (see [8]) the result follows.

We prove the following properties as in [8].

PROPOSITION 6. (1) The q-translation operator T_x^{α} is a solution of the following q-hyperbolic problem,

$$\Delta_{\alpha, q, x} u(x, y) = \Delta_{\alpha, q, y} u(x, y)$$
(72)

$$u(x, y) = f(x), \qquad f \in \mathcal{D}_{*,q}$$
(73)

$$D_{q,x}u(x, y)|_{(x, y)=(0, 0)} = 0.$$
(74)

(2) The following q-product formula holds:

$$T_{x}^{\alpha}j_{\alpha}(y,q^{2}) = j_{\alpha}(x,q^{2}) j_{\alpha}(y,q^{2}).$$
(75)

For $f, g \in \mathcal{D}_{*,q}$ we define the *q*-Bessel convolution by

$$f \star_{\alpha} g(x) = \frac{(1+q^{-1})^{-\alpha}}{\Gamma_q^2(\alpha+1)} \int_0^\infty T_x^{\alpha} f(y) g(y) y^{2\alpha+1} d_q y.$$
(76)

It satisfies

$$\chi_{\alpha,q}(f \bigstar_{-1/2} g) = \chi_{\alpha,q}(f) \bigstar_{\alpha} \chi_{\alpha,q}(g), \tag{77}$$

where $\bigstar_{-1/2}$ design the *q*-even convolution [8].

6. q-BESSEL FOURIER TRANSFORM

In the following we suppose $\frac{\ln(1-q)}{\ln q} \in \mathbb{Z}$ and denote by $L^1_{\alpha}(S_q, x^{2\alpha+1}d_qx)$ the space of functions f such that $\int_0^\infty |f(x)| x^{2\alpha+1}d_qx < +\infty$.

For $f \in L^1_{\alpha}(S_q, x^{2\alpha+1} d_q x)$, we define the *q*-Bessel Fourier transform by

$$\mathscr{F}_{\alpha,q}(f) = \frac{(1+q^{-1})^{-\alpha}}{\Gamma_{q^2}(\alpha+1)} \int_0^\infty f(x) \, j_\alpha(\lambda x, q^2) \, x^{2\alpha+1} \, d_q x, \qquad \lambda \in S_q.$$
(78)

We summarize here some of its properties which are easily deduced from the results shown before.

PROPOSITION 7. (1) For $f \in L^1_{\alpha}(S_q, x^{2\alpha+1} d_q x)$ and $\lambda \in S_q$ we have

$$|\mathscr{F}_{\alpha,q}(f)(\lambda)| \leq \frac{1}{(1-q)^{1/2} (q;q)_{\infty}} ||f||.$$
⁽⁷⁹⁾

(2) If \mathcal{F} is the q-cosine Fourier transform [8], then

$$\mathscr{F}_{\alpha,\,q} = \mathscr{F} \circ {}^t \chi_{\alpha,\,q},\tag{80}$$

$$\mathscr{F} = \mathscr{F}_{\alpha, q} \circ {}^{t}\chi_{\alpha, q}^{-1}.$$
(81)

(3) For $f, g \in \mathcal{D}_{*,q}$ we have

$$\mathscr{F}_{\alpha,q}(f \bigstar_{\alpha} g) = \mathscr{F}_{\alpha,q}(f) \mathscr{F}_{\alpha,q}(g); \tag{82}$$

$$\mathscr{F}_{\alpha,q}(T^{\alpha}_{x}f)(\lambda) = j_{\alpha}(\lambda x, q^{2}) \mathscr{F}_{\alpha,q}(f)(\lambda), \qquad \lambda \in S_{q}.$$
(83)

(4) For
$$f \in \mathcal{D}_{*,q}$$
, we have

$$\mathscr{F}_{\alpha,q}(\varDelta_{\alpha,q}f)(\lambda) = -\frac{\lambda^2}{q^{2\alpha+1}}\mathscr{F}_{\alpha,q}(f)(\lambda).$$
(84)

7. APPLICATIONS

We conclude this work by giving two applications of the q-Bessel Fourier transform. We begin by recalling the two q-analogue of the exponential function.

$$E(x;q^2) = (-(1-q^2)x;q^2)_{\infty} = \sum_{n=0}^{\infty} \frac{(1-q^2)^n}{(q^2;q^2)_n} q^{n(n-1)} x^n, \qquad x \in \mathbf{R}$$
(85)

$$e(x;q^2) = \frac{1}{((1-q^2)x;q^2)} = \sum_{n=0}^{\infty} \frac{(1-q)^n}{(q^2;q^2)_n} x^n.$$
 (86)

For the convergence of the last series we need $|x| < 1/(1-q^2)$; however, because of its product representation $e(x; q^2)$ has an analytic continuation to $\mathbb{C} \setminus \{q^{-k}/(1-q^2), k \in \mathbb{N}\}$. They satisfy $e(x; q^2) E(-x; q^2) = 1$.

7.1. q-Weber Integral

The classical Weber integral [24] can be rewritten as

$$\int_0^\infty e^{-a^2x^2} j_\alpha(bx) \ x^{2\alpha+1} \ dx = \frac{2^\alpha \Gamma(\alpha+1)}{(2a^2)^{\alpha+1}} \ e^{-\frac{b^2}{4a^2}} \ dx$$

where j_{α} is the Bessel function (1), a > 0, b > 0, and $\alpha > -1$. The previous relation is the Bessel Fourier transform of $e^{-a^2x^2}$. To look for its *q*-analogue we first evaluate by the Ramanujan identity [13] the *q*-integral

$$\frac{1}{A_{\alpha}} \int_{0}^{\infty} \frac{x^{2n+2\alpha+1}}{(-(1-q^2) x^2; q^2)_{\infty}} d_q x = q^{-(n^2+n+2n\alpha)} \frac{q^{2\alpha+4}; q^2)_n}{(1-q^2)^n},$$

where $A_{\alpha} = \int_{0}^{\infty} (x^{2\alpha+1}/(-(1-q^2)x^2;q^2)_{\infty}) d_q x$, which is estimated by the same identity (see [8]).

PROPOSITION 8. For $a, \lambda \in S_a$, we have

$$\frac{1}{A_{\alpha}} \int_{0}^{\infty} e(-a^{2}x^{2}; q^{2}) j_{\alpha}(\lambda x; q^{2}) x^{2\alpha+1} d_{q}x = \frac{1}{a^{2\alpha+2}} e\left(-\frac{q^{-(2\alpha+1)}}{a^{2}(1-q)^{2}} \lambda^{2}; q^{2}\right).$$
(87)

The last equality is the q-Weber integral.

7.2. q-Heat Bessel Polynomials

We consider the two q-parabolic problem

$$\Delta_{q,\alpha} u(x;t) = D_{q^2,t} u(x;q^{-2}t)$$
(88)

$$\Delta_{q,a} u(x;t) = D_{q^2,t} u(x;t)$$
(89)

We add to these q-equations the following conditions

$$u(-x;t) = u(x;t)$$
 (90)

$$u(0;t) = f(x), \qquad f \in L^{1}_{\alpha}(S_{q}, x^{2\alpha+1} d_{q}x).$$
(91)

$$D_{q}u(x;t)|_{(x,t)=(0,0)}.$$
(92)

The relations (88) and (89) are the q-analogue of the classical Bessel heat equation [9, 11, 13]. In many fields an important role is played by the q-solution source also called the q-heat Bessel kernel which can be constructed as follows.

Putting

$$U(\lambda; t) = \mathscr{F}_{\alpha}(u(.; t))(\lambda)$$

then (87) and (90) become respectively

$$D_{q,t}U(\lambda,t) = -\frac{\lambda^2}{q^{2\alpha+1}}U(\lambda,t)$$

and

$$U(\lambda, 0) = \mathscr{F}_{\alpha}(f)(\lambda).$$

The resolution of this last q-differential equation leads to

$$U(\lambda, t) = e(-\lambda^2 q^{-2\alpha - 1}; q^2)$$

We define the *q*-solution source by

$$\mathscr{F}_{\alpha}(G(.,t;q^2) = e(-\lambda^2 q^{-2\alpha-1}t;q^2)$$

and by Proposition 8 we have

$$G(x, t; q^{2}) = \frac{e\left(-\frac{-x^{2}}{(1+q)^{2}qt}; q^{2}\right)}{A_{\alpha}(t)(1+q)^{2\alpha+2}(qt)^{\alpha+1}}.$$
(93)

The solution of the q-Bessel heat equation is

$$u(x; t) = f \bigstar_{\alpha} G(., t; q^2)(x).$$

When q tends to 1^- the function $G(x, t; q^2)$ tends to the heat Bessel kernel [11].

To define the q-heat Bessel polynomials, we observe that

$$\lambda \to E(-\lambda^2 q^{-2\alpha-1}t; q^2) j_{\alpha}(\lambda x; q^2)$$

is analytic, so we deduce from (35) and (85) the expansion

$$E(-\lambda^2 q^{-2\alpha-1}t; q^2) j_{\alpha}(\lambda x; q^2) = \sum_{n=0}^{\infty} (-1)^n q^{n^2-n} \frac{(1-q)^{2n}}{(q;q)_{2n}} v_{n,\alpha}(x,t;q^2) \lambda^{2n}$$

$$v_{n,\alpha}(x,t;q^2) = \frac{(q;q)_{2n}}{(1-q)^{2n}} \sum_{k=0}^n \frac{(1-q^2)^k}{(q^2;q^2)_k} q^{k^2-k} b_{n-k,\alpha}(x;q^2),$$
(94)

where $b_{n-k,\alpha}$ is given by (37).

The quantities $v_{n,\alpha}$ will be called the *q*-Bessel heat polynomials. The *q*-Laguerre polynomials $L_n^{(\alpha)}$ were studied by Moak [18] and they are related to the $v_{n,\alpha}$ as

$$v_{n,\alpha}(x,t;q^2) = \frac{(q;q)_{2n}}{(q^{2\alpha+2};q^2)} \left(\frac{1+q}{1-q}\right)^n q^{-n(2\alpha+1)} L_n^{(\alpha)} \left(\frac{-x^2 q^{-2n+1}}{(1+q)^2 t};q^2\right).$$

The classical properties of the Bessel heat polynomials and representation theory associated with them can be extended to the $v_{n,\alpha}$ and that will be the subject of a coming work.

ACKNOWLEDGMENT

The authors thank Mourad Ismail for some comments and helpful remarks.

REFERENCES

- G. E. Andrews, "q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra," Regional Conference Series in Math., Vol. 66, Amer. Math. Soc., Providence, 1986.
- R. Askey and M. E. H. Ismail, A generalization of ultrasherical polynomials, *in* "Studies in Pure Mathematics" (P. Erdős, Ed.), Birkhäuser, Basel, 1983.
- W. N. Bailey, "Generalized Hypergeometric Series," Cambridge Univ. Press, Cambridge, UK, 1935; reprint, Hafner, New York, 1972.
- H. Chebli, "Opérateurs de Translation Généralise et Semi-groupe de Convolution: Théorie du Potentiel et Analyse Harmonique," Lecture Note, No. 404, 1974.
- 5. F. M. Cholevinsky, "The Calculus Associated with Bessel Functions," Contemp. Math., Amer. Math. Soc., Providence, 1988.
- 6. Ph. Feinsilver, Elements of q-harmonic analysis, J. Math. Anal. Appl. 141 (1989), 509-526.
- A. Fitouhi and H. Annabi, La g-fonction de Littlewood-Paley associée à une classe d'opérateur différentiel sur (0, ∞) contenant l'opérateur de Bessel, C. R. Acad. Paris Ser. I 303, 411-413.
- 8. A. Fitouhi and F. Bouzeffour, q-Cosine Fourier transform and q-heat equation, Ramanujan J., in press.
- 9. A. Fitouhi, Heat "polynomials" for a singular differential operator on $(0, \infty)$, Constr. Approx. 5 (1989), 241–270.
- G. Gasper and M. Rahman, "Basic Hypergeometric Series," Encyclopedia of Mathematics and Its Applications, Vol. 35, Cambridge Univ. Press, Cambridge, UK, 1990.

- D. T. Haimo, Expansion of generalized heat polynomials and their appell transform, J. Math. Mech. 15, 735–758.
- 12. F. B. Hilbrandt, "Advanced Calculus for Applications," Prentice-Hall, New York.
- 13. M. E. H. Ismail, A simple proof of Ramanujan's $_1\psi_1$ sum, Proc. Amer. Math. Soc. 63 (1977), 185–186.
- F. H. Jackson, On q-functions and a certain difference operator, Trans. Roy. Soc. London 46 (1908), 253–281.
- 15. F. H. Jackson, On a q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.
- T. H. Koornwinder, q-Special functions, a tutorial, Mathematical Preprint Series, Report 94–08, University of Amsterdam, The Netherlands.
- T. H. Koornwinder and R. F. Swarttouw, On q-analogues of the Hankel and Fourier transform, *Trans. Amer. Math. Soc.* 333 (1992), 445–461.
- D. S. Moak, The q-analogue of the Laguerre polynomials, J. Math. Anal. Appl. 81 (1981), 21–47.
- 19. P. C. Rosenbloom and D. V. Widder, Expansions in terms of heat polynomials and associated functions, *Trans. Amer. Math. Soc.* 92, 220–266.
- A. Schwartz, The structure of the algebra of Hankel transforms and the algebra of Hankel–Stieltjes transforms, *Canad. J. Math.* 23, No. 2 (1971), 236–246.
- R. F. Swarttouw, "The Hahn-Exton q-Bessel Function," Ph.D. thesis, Delft Technical University, 1992.
- 22. E. C. Titchmarsh, "Introduction to the Theory of Fourier Integrals," 2nd ed., Oxford Univ. Press, London, 1937.
- K. Trimèche, Transformation intégrale de Weyl et théorème de Paley–Wiener associés un opérateur différentiel singulier sur (0, ∞), J. Math. Pures Appl. 60, 51–98.
- G. N. Watson, "A Treatise on the Theory of the Bessel Functions," 2nd ed., Cambridge Univ. Press, London/New York.