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In this paper we study the q-analogue of the ja Bessel function (see (1))
which results after minor changes from the so-called Exton function studied by
Koornwinder and Swarttow. Our objective is first to establish, using only the
q-Jackson integral and the q-derivative, some properties of this function with proofs
similar to the classical case; second to construct the associated q-Fourier analysis
which will be used in a coming work to construct the q-analogue of the Bessel-
hypergroup. © 2002 Elsevier Science (USA)

1. INTRODUCTION

The ja Bessel function is defined by

ja(x)=2aC(a+1) x−aJa(x), (1)

where Ja(.) is the Bessel function of the first kind and of index a

Ja(x)=C
.

k=0

(−1)k

k! C(a+k+1)
1x
2
2a+2k. (2)

For l complex, the function ja(lx) is the eigenfunction of the second-order
singular differential equation

u'+
2a+1
x
u −=−l2u (3)

u(0)=1, u −(0)=0. (4)



The Hankel transform is linked to the function ja. During the last years
many authors gave several possible q-analogues of Ja; we cite those intro-
duced by Jackson and denoted by M. E. Ismail as J (1)a (x; q) and J

(2)
a (x; q)

and those given by Hahn and Exton and Koornwinder and Swarttow
[16, 21] (following M. E. Ismail the Hahn–Exton q-Bessel functions are
also due to Jackson). In his thesis, Swarttow exploiting the Hahn–Exton
q-Bessel function and using an orthogonality relation involving the q-basic
hypergeometric function studied the q-Bessel transform and its inverse
formula. It is interesting to introduce this last transform in a similar way as
the classical one [22].
In this paper we are concerned with the q-analogue of the ja Bessel
function (1). This choice is motivated in particular by the facilities in
computation without leaving the context of [4, 7, 22, 23].
The reader will notice that the definition (35) derives from that given
in [16] with minor changes. We are not in a situation to claim that the
proofs of the properties of the q-ja Bessel function are new but the methods
used here to establish the q-integral representation of Mehler and Sonine
type have a good resemblance with the classical ones. The q-differential
second order difference operator (41) introduced in this paper has the q-ja
Bessel function (35) as an eigenfunction and is a limit case of the Bessel
operator. With the help of the q-integral representation we define the
q-transmutation operator qa, q which is the q-analogue to the well-known
Erdelyi–Koober operator. Combining qa, q first with the q-even translation
[8] and second with the q-cosine Fourier transform [8] we are able to
define the q-Bessel translation and the q-Bessel transform and to establish
easily some of their properties. Finally we initiate the study of the q-Bessel
heat equation.

2. THE q-ja BESSEL FUNCTION AND PRELIMINARIES

2.1. Preliminaries

We recall some usual notions and notations used in the q-theory; to
deepen the following notions the reader can consult [1–3, 10, 17].
Let a and q be real numbers such that 0 < q < 1; the q-shifted factorials
are defined by

(a; q)k=(1−a)(1−aq) · · · (1−aqk−1), k=1, 2, ... (5)

(a; q)−k=
1

(aq−k; q)k
, k=1, 2, ...; a ] q, q2, ... . (6)
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We recall the following simple formulas

(a; q)2n=(a; q2)n (aq; q2)n, (7)

(a; q)n−k=
(a; q)n

(a−1q1−n; q)n
1 −q
a
2k q k(k−1)2 −nk. (8)

The q-combinatorial coefficients are defined for n and k integers,
0 [ k [ n, by

5n
k
6
q
=

(q; q)n
(q; q)n−k (q; q)k

, (9)

and it is easy to have

(a; q)n=C
n

k=0

5n
k
6
q
q
k(k−1)
2 (−a)k. (10)

We also denote

(a1, a2, ..., ap; q)n=(a1; q)n (a2; q)n · · · (ap; q)n. (11)

The q-hypergeometric function 1f1 is important in this work; we summarize
here some of its properties (see Koornwinder and Swarttouw [17]).
For w, z ¥ C, the series

(w; q). 1f1(0; w; q, z)=C
.

k=0

(−1)k q
k(k−1)
2 (wqk; q).

(q; q)k
zk (12)

defines an analytic function in w and z, which is symmetric in these
variables in the following sense

(w; q). 1f1(0; w; q, z)=(z; q). 1f1(0; z; q, w) (13)

and both sides of the last equation are majorized by

(−|z|; q). (−|w|; q).. (14)

Now for n integer and z complex we have

(q1−n; q). 1f1(0; q1−n; q, z)=(−z)n q
n(n−1)
2 (q1+n; q). 1f1(0; q1+n; q, zqn);

(15)

146 FITOUHI, HAMZA, AND BOUZEFFOUR



if we take into account (12), we obtain

: (q1+n; q).
(q; q).

1f1(0; q1+n; q, z) :[
(−|z|, −q; q).
(q; q).
˛1, if n\ 0

|z−n| qn(n+1)/2 if n[ 0.
(16)

When we put z=q1+k; k ¥ Z, the symmetric relation (13) leads to

: (q1+n; q).
(q; q).

1f1(0; q1+n; q, q1+k) :[
(−qn, −q; q).
(q; q).
˛1 if k\ 0

q−knq
k(k−1)
2 if k[ 0.

The q-derivative Dqf of a function f on an open interval is given by

(Dqf)(x)=
f(x)−f(qx)
(1−q) x

, x ] 0 (17)

and (Dqf)(0)=f −(0) provided f −(0) exists.
If f is differentiable then (Dqf)(x) tends to f −(x) as qQ 1−. The
following identities can be obtained from (17).
For a ¥ C and n=0, 1, ... we have

Dnq[f(ax)]=a
n(Dnqf)(ax), (18)

Dnqf(x)=
(−1)n

xn(1−q)n
C
n

k=0
(−1)k 5

n

k
6
q
q
−(n−k)(n−k−1)

2 f(qn−kx), (19)

Dnq(f(x) g(x))=C
n

k=0

5n
k
6
q
Dn−kq f(q

kx) Dkqg(x). (20)

The q-Jackson integrals from 0 to a and from 0 to . are defined by

F
a

0
f(x) dqx=(1−q) a C

.

n=0
f(aqn) qn (21)

F
.

0
f(x) dqx=(1−q) C

.

−.
f(qk) qk, (22)

provided the sums converge absolutely.
Let us denote by Sq the set

Sq={qk; k ¥ Z}. (23)
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For n ¥ Z and a ¥ Sq we have

F
.

0
f(qnx) dqx=

1
qn

F
.

0
f(x) dqx (24)

F
a

0
f(qnx) dqx=

1
qn

F
aqn

0
f(x) dqx. (25)

The q-integration by parts is given for suitable functions f and g by

F
.

0
f(x) Dq g(x) dqx=[f(x) g(x)]

.

0 −F
.

0
Dq(f(q−1x)) g(x) dqx. (26)

Jackson [15] defined the q-analogue of the Gamma function as

Cq(x)=
(q; q).
(qx; q).

(1−q)1−x , 0 < q < 1; x ] 0, −1, −2, ... . (27)

It satisfies the functional equation

Cq(x+1)=
qx−1
q−1

Cq(x), Cq(1)=1 (28)

and tends to C(x) when q tends to 1−; moreover the q-duplication formula
holds

Cq(2x) Cq2(
1
2)=(1+q)

2x−1 Cq2(x) Cq2(x+
1
2). (29)

The q-Beta function is defined by

bq(x, y)=F
1

0
tx−1

(tq; q).
(tqy; q).

dqt, x > 0, y > 0, (30)

=(1−q) C
.

n=0

(qn+1; q).
(qn+y; q).

qny; (31)

and we have

bq(x, y)=
Cq(x) Cq(y)
Cq(x+y)

. (32)
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2.2. The q-ja Bessel function

We recall the following definition of the q-trigonometric functions

cos(x; q2)=C
.

n=0
(−1)n qn(n−1)

(1−q)2n

(q; q)2n
x2n=C

.

n=0
(−1)n bn(x; q2); (33)

sin(x; q2)=C
.

k=0
(−1)k qk(k−1)

(1−q)2k+1

(q : q)2k+1
x2k+1. (34)

We define the q-ja Bessel function by

ja(x; q2)=Cq2(a+1) C
.

n=0
(−1)n

qn(n−1)

Cq2(a+n+1) Cq2(n+1)
1 x
1+q
22n. (35)

=C
.

n=0
(−1)n bn, a(x; q2), (36)

where

bn, a(x; q2)=bn, a(1; q2) x2n=
Cq2(a+1) qn(n−1)

(1+q)2n Cq2(n+1) Cq2(a+n+1)
x2n (37)

and

bn, −1/2(x; q2)=bn(x; q2). (38)

The q-ja Bessel function ja(x; q2) is defined on R and tends to the ja Bessel
function (1) as qQ 1−.
By simple computation using (27) and (29) we obtain

j−1/2(x; q2)=cos(x; q2), (39)

j1/2(x; q2)=
sin(x; q2)
x

. (40)

We introduce the q-Bessel operator

Dq, af(x)=
1
x2a+1

Dq[x2a+1Dqf](q−1x)

=q2a+1Dqf(x)+
1−q2a+1

(1−q) q−1x
Dqf(q−1x), (41)
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where

Dqf(x)=(D
2
qf)(q

−1x). (42)

Proposition 1. The function ja(lx; q2), l being complex, is the solution
of the q-problem

Dq, a y(x)+l2y(x)=0 (43)

y(0)=1, y −(0)=0. (44)

The proof is straightforward.

3. q-INTEGRAL REPRESENTATIONS

In this section we give two q-integral representations of the q-ja Bessel
function (35) involving the q-Jackson integral.

3.1. q-Mehler Type

We introduce and denote byWa the q-binomial function

Wa(x; q2)=
(x2q2; q2).
(x2q2a+1; q2).

=1f1(q1−2a, −, q2, x2q2a+1), (45)

which tends to (1−x2)a−1/2 as qQ 1−.

Theorem 1. For a ] −1/2, −1, −3/2, ..., the q−ja Bessel function has
the following q-integral representation of Mehler type

ja(x; q2)=(1+q) C(a; q2) F
1

0
Wa(t; q2) cos(xt; q2) dqt, (46)

whereWa is given by (45) and

C(a; q2)=
Cq2(a+1)

Cq2(1/2) Cq2(a+1/2)
. (47)

Remark that when qQ 1− and a > −1/2 the formula (46) tends to the
classical Mehler formula

ja(x)=
2C(a+1)

`p C(a+1/2)
F
1

0
(1−t2)a−1/2 cos(xt) dt.
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Proof. Using the expansion (33) of cos(xt; q2) we turn up to compute
the integral

Ik=F
1

0

(t2q2; q2).
(t2q2a+1; q2).

t2k dqt.

For this end we use the identity

F
1

0
f(t) dq2t=F

1

0
f(u2) Dqu2 dqu

which implies

bq2(x, y)=
Cq2(x) Cq2(y)
Cq2(x+y)

=(1+q) F
1

0
t2x−1

(t2q2; q2).
(t2q2y; q2).

dqt

therefore

Ik=
1
1+q

Cq2(a+1/2) Cq2(k+1/2)
Cq2(a+k+1)

.

Finally, the use q-duplication formula (29)

(1+q)2k−1 Cq2(k+1) Cq2(k+1/2)=
1

(1+q)
(q; q)2k (1−q)−2k Cq2(1/2)

leads to the result. The computation is legitimated by the fact that the
series

C
.

0
qk(k−1)

(1−q)2k

(q; q)2k
Ikx2k

converges uniformly on every compact.

Corollary 1. For q ¥ Sq and
ln(1−q)
ln(q) ¥ Z we have the estimations

| ja(x; q2)| [
1

(q; q2)2.
, a > −1/2. (48)

|Dq ja(x; q2)| [
1−q
1−q2a+2

.
1

(q; q2)2.
x, x ¥ Sq, a > −1/2 (49)

The inequality (48) is a consequence of (46) and the fact that cos(x; q2) [
1/(q; q2)2. (see [8]).
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To prove the second inequality, we note that from (43) we have

Dq ja(x; q2)=
1
x2a+1

F
x

0
t2a+1ja(qt; q2) dqt

and

F
x

0
t2a+1 dqt=

1−q
1−q2a+2

x2a+2.

The result follows then by (48).
It is established that the Bessel function and the Gegenbauer polynomials
are linked by the so-called Gegenbauer integral representation (Watson
[24]) which can be rewritten for the Bessel function ja as

ja+2n(x)=K(n, a) F
1

0
(1−t2)a−1/2 Ca2n(t) cos(xt) dt, (50)

with

K(n, a)=
22n+1(−1)n

x2n
(2n)! C(2a) C(a+2n+1)

`p C(a+1/2) C(2a+2n)

and where Can(t) is the Gegenbauer polynomial. Owing to the q-Mehler
integral representation (50) we are able to give the q-analogue of the
previous representation.

Proposition 2. The q-ja Bessel function ja+2n(x; q2) has the q-Gegenbauer
integral representation

ja+2n(x; q2)=K(n, a; q2) F
1

0
Wa(t; q2) C̃

a
2n(t; q

2) cos(xtq−n; q2) dqt, (51)

with

K(n, a; q2)=
(1+q)(−1)n Cq2(a+2n+1)
x2nCq2(1/2) Cq2(a+2n+1/2)

Cq2(2a+2n+2)

qn
2−nCq2(2a+2)

and where

C̃an(x; q
2)=P̃ (a−1/2, a−1/2)n (x, qa−1/2, qa−1/2, 1, 1; q), (52)

P̃ (a, b)n (x, a, b, c, d; q) being the big q-Jacobi polynomial (see [16]).
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To show (51), we recall the useful properties

(i) Wa(±q−1; q2)=0

(ii) DqC̃
a
n(x; q

2)=
1−qn

1−q
C̃a+1n (x; q

2)

(iii)
1

Wa(x; q2)
D+q [Wa+1(x; q

2) C̃a+1n−1(x; q
2)]=

q2a+1−q−n+1

1−q
C̃an(x; q

2),

where

D+q f(x)=
f(q−1x)−f(x)
(1−q) x

. (53)

We start by integrating by parts the formula (46). Properties (i) and (iii)
lead, since Dq, t(sin(xt; q2))=x cos(xt; q2) after the change a by a+1, to

ja+1(x; q2)=
1+q
x

Cq2(a+2) Cq2(2a+4)
Cq2(1/2) Cq2(a+1+1/2) Cq2(2a+3)

×F
1

0
C̃a1(t; q

2) Wa(t; q2)) sin(xt; q2) dq.

By the use of relation (iii) and the fact that C̃a1(0; q
2)=0 we find that

ja+2(x; q2)=−
(1−q) Cq2(a+3) Cq2(2a+4)

x2Cq2(1/2) Cq2(a+2+1/2) Cq2(2a+2)

×F
1

0

1−q2a+1

1−q
D+q [Wa(a; q

2) C̃a1(t; q
2)] dqt,

that is, the relation (51) for n=1; the result follows then by induction.

3.2. q-Sonine Type

Theorem 2. For a > −1/2 and p \ 1, the q-ja+p Bessel function has the
q-integral representation of Sonine type

ja+p(x; q2)=
(1+q) Cq2(a+p+1)
Cq2(1/2) Cq2(p)

F
1

0
t2a+1Wp−1(t; q2) ja(xt; q2) dqt. (54)

THE q-ja BESSEL FUNCTION 153



The limit case of the previous formula , as qQ 1−, is the known Sonine
integral for the ja+p Bessel function

ja+p(x)=
2C(a+p+1)
C(a+1) C(p)

F
1

0
t2a+1(1−t2)p−1 ja(xt; q2) dt.

To prove (54) we replace ja(xt; q2) by its expansion (35) in the integral and
the fact that

(1+q) F
1

0
t2a+2k+1

(t2q2; q2).
(t2q2p; q2).

dqt=
Cq2(a+k+1) Cq2(p)
Cq2(a+k+p+1)

.

The justification of the computation is similar then to Theorem 1.

4. q-TRANSMUTATION

We intend to solve the q-integral equation defined on the Sq by

(1+q) C(a; q2) F
1

0
Wa(t; q2) f(xt) dqt=g(x), (55)

where C(a; q2) is given by (47), f is the unknown function, g a given
suitable function andWa the q-binomial function (45).
When qQ 1− this last equation is reduced to the well known Abel
integral equation.

Theorem 3. The solution of the q-integral equation (55) is given as
follows

(1) If a ] k+1/2, k ¥ Z we have

f(x)=
Cq2(1/2)

Cq2(a+1) Cq2(−a+1/2)
Dq, x 5x F

1

0

(t2q2; q2).
(t2q−2a+1; q2).

g(xt) t2a+1 dqt6 .
(56)

(2) If a=k+1/2, k ¥ Z we have

f(x)=
(1−q)k

(q; q2)k
Dq, x 5

1
x
Dq, x6

k

(x2k+2g(x)). (57)
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Proof. (1) If a ] k+1/2, k ¥ Z, we put

g(x)=
(1+q) Cq2(a+1)
Cq2(1/2) Cq2(a+1/2)

F
1

0

(t2q2; q2).
(t2q2a+1; q2).

f(xt) dqt.

so

x F
1

0
u2a+1

(u2q2; q2).
(u2q−2a+1; q2).

g(ux) dqu=
(1+q)(1−q)2 Cq2(a+1)
Cq2(1/2) Cq2(a+1/2)

x

×C
n, m
q (2a+1) n

(q2n+2; q2).
(q2n−2a+1; q2).

q2m+2; q2).
(q2m+2a+1; q2).

f(xqn+m) qn+m

provided the double series converges absolutely.
When we make the change k=n+m the second member becomes

(1+q)(1−q2) Cq2(a+1)
Cq2(1/2) Cq2(a+1/2)

x C
.

k=0
qkf(xqk) A(a, k)

with

A(a, k)=C
k

n=0
q (2a+1) n

(q2n+2; q2).
(q2n−2a+1; q2).

(q2k−2n+2; q2).
(q2k−2n+2a+1; q2).

.

The q-binomial formula (9) gives that

A(a, k)=
(q2; q2)2.

(q−2a+1; q2). (q2a+1; q2).
.

Since A(a, k) can be rewritten in terms of the q-Gamma function we
deduce the result.
(2) If a=k+1/2, k ¥N, the q-integral equation reduces to

g(x)=
(1+q) Cq2(a+1)
Cq2(1/2) Cq2(a+1/2)

F
1

0
(t2q2; q2)k f(xt) dqt

which can be written

xg(x)=
(q; q2)k
(q2; q2)k

F
x/q

0

1q2 t
2

x2
; q22

k
f(t) dqt.
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We introduce the functions

F0(t)=f(t)

Fk(t)=t F
t

0
Fk−1(u) dqu, k=1, 2, ... .

By k-integrations by parts we obtain

xg(qx)=
(q; q2)k

(1−q)k (x)2k
F
x

0
Fk(t) dqt.

Hence

Fk(x)=
(1−q)k

(q; q2)k
Dq, x[x2k+1g(x)]

and then

f(x)=
(1−q)k

(q; q2)k
Dk+1
q, x [x

2k+2g(x)],

where we have put D.=Dq, x[
1
x .].

Now we consider the sets

Ŝq={±qk, q ¥ Z} 2 {0}, S̃q=Sq 2 {0} (58)

where Sq is given by (23) and we design by Dg, q the space of functions
defined in S̃q which are the restriction of the even function with compact
support in Ŝq. This space is equipped with the topology of uniform
convergence.
For a ] −1/2, −1, −3/2, ... and f ¥Dg, q, we define the q-analogue of
the Kober–Erdelyi transform by

qa, q(f)(x)=C(a; q2)
1+q
x

F
x

0
Wa 1

t
x
; q22 f(xt) dqt, x ] 0 (59)

qa, q(f)(0)=f(0) (60)

where C(a; q2) andWa are given respectively by (47) and (45).

156 FITOUHI, HAMZA, AND BOUZEFFOUR



Theorem 4. The operator qa, q is an isomorphism on Dg, q with inverse
given by (56) and Proposition 3. Moreover, it transmutes the q-operator Dq, a
and Dq in the following sense:

Dq, aqa, q=qa, qDq. (61)

When q tends to 1−, the operator qa, q tends to the Kober–Erdelyi operator [12].

Proof. Let f be a function of Dg, q; then there exists g: Ŝq Q C even and
with compact support such that g(x)=f(x), x ¥ S̃q.We have

qa, q(f)(x)=qa, q(g)(x);

therefore if x ¨ supp(g) then qa, q(f)(x)=0, and the q-integral equation

qa, q(f)=h, h ¥Dg, q

has a unique solution in Dg, q.
For x ¥ Sq we put

L(x)=
1

(1+q) C(a; q2)
(Dq, aqa, q(f)−qa, qDq(f))(x).

We have

L(x)=−F
1

0
(1−t2) Wa(t; q2) Dqf(xt) ddt

+
1−q2a+1

1−q
q
x
F
1

0
Wa(t; q2) Dqf(xt) dqt.

Integration by parts gives that the first integral of the second member of
this last equality becomes

−5(1−t2) Wa(t; q2)
q
x
Dqf(xt)6

1

0
+F

1

0
Dq[(1−t2) Wa(t; q2)]

q
x
Dqf(xt) dqt.

Taking account of the fact that

Dq[(1−t2) Wa(t; q2)]=−
1−q2a+1

1−q
tWa(t; q2)
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and Dqf(0)=0, we obtain that the previous quantity is equal to

1−q2a+1

1−q
F
1

0
qtx−1Wa(t; q2) dqf(xt) dqt.

This gives L(x)=0, x ¥ Sq.
To find the q-analogue to the Weyl transform [23], we begin by defining
the q-Jackson integral on (a,.) by

F
.

a
f(t) dqt=F

.

0
f(t) dqt−F

a

0
f(t) dqt=(1−q) a C

−1

−.
f(aqk) qk, (62)

provided the series converges.
For f ¥Dg, q and a ] −1/2, −1, −3/2, ..., we define the q-transpose of
qa, q by

tqa, q(f)(x)=
q(1+q−1)−a+1/2 Cq2(a+1)

C2q2(a+1/2)
F
.

qx
Wa 1

x
t
, q22 f(t) t2a dqt. (63)

Simple computation leads, for f, g ¥Dg, q, to

(1+q−1)−a

Cq2(a+1/2)
F
.

0
qa, q(f)(x) g(x) x2a+1 dqx=

(1+q−1)1/2

Cq2(1/2)
F
.

0
f(x)t qa, q(g) dqx.

Proposition 3. The q-transposed operator tqa, q is an isomorphism on
Dg; q moreover,

(1) if a ] k+12 , k ¥ Z, and a ¨ Z−

tq−1a, q(f)(x)=
(1+q)a+1/2 Cq2(a+1/2)

Cq2(a+1) Cq2(−a+1/2) x2a+1

×
1
x
D+q, x 5F

.

qx
W−a 1

x
t
; q22 f(t) t−2a dqt6 ; (64)

(2) if a=k+12 , k ¥ N

tq−1a, q(f)(x)=q
k−1(1+q)2k

Cq2(k+1)
Cq2(k+3/2)

11
x
D+q 2

k+1

(f(x)), (65)

where D+q is given by (53).

To prove the result we proceed as in Theorem 3 by taking account of the
q-Jackson integral on (a,.).
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5. q-BESSEL TRANSLATION AND q-BESSEL CONVOLUTION

In the literature many methods are used to establish the generalized
translation associated with the Bessel operator (3); we select the one
deduced by the product formulas [7, 20] and those built with the trans-
mutation operator. In this section we study the q-analogue of these last
methods and we show that they are equivalent.

Proposition 4. For n=0, 1, 2, ..., there exists a sequence Uk(n) satisfying

Uk(n+1)=q2n+1Uk+1(k)+(q+q2a+1Uk(n)+q−2n+2a+1Uk−1(n). (66)

Uk(n)=0 if |k| > n. (67)

and

Dnq, af(x)=
1

(1−q)2n q−nx2n
C
n

k=−n
(−1)n−k Uk(n) f(qkx). (68)

Proof We proceed by induction on n.
If n=1, the definition (41) gives

Dq, af(x)=
1

(1−q)2 q−1x2
{qf(q−1x)−(q+q2a+1) f(x)+q2a+1f(qx)}

so the identities are true with U−1(1)=q, U0(1)=q+q2a+1, and U1(1)=q2a+1.
Suppose that (66), (67), and (68) hold for n, so that

Dn+1q, a =
1

(1−q)2n q−1x2
C
k=n

k=−n
(−1)n−k Uk(n) Dq, a 1

f(qkx)
x2n
2

and

Dn+1q, a f(x)=
1

(1−q)2n q−nx2
C
n

k=−n
(−1)n−k Uk(n) Dq, a 1

f(qkx)
x2n
2 .

Since

Dq, a 1
f(qkx)
x2n
2= 1
(1−q)2n q−1x2

5q f(q
k−1x)

(q−1x)2n
−(q+q2a+1)

f(qkx)
x2n

+q2a+1
f(qk+1x)
(qx)2n
6

the result follows.

THE q-ja BESSEL FUNCTION 159



Adopting the Cholewinsky terminology [5], the quantities Uk(n) are
called the q-binomial coefficients related with the q-Bessel operator (41).
For n and k integers, we put

kn(z)= C
n

k=−n
Uk(n) zn, and fk(z)= C

n \ |k|
Uk(n) zkq.

The relation (10) gives

kn(z)=qn(−z; q2)n 1 −
q2a

z
; q−22

n
=qn(2a+1−n) (−z; q2)n (−zq−2a; q2)n z−n.

Using (66), we state

Uk(n)=qk(k−1)+2n(k+a) C
k

p=0

5n
p
6
q2
5 n

n+k−p
6
q2
q−2p(n+k+a. (69)

The functions fk(z) satisfy

[1−(q+q2a+1] fk(z)=qz[fk+1(q2z)+q2afk−1(q−2z)].

For f ¥Dg, q, we define the q-generalized Bessel translation by

Tax(f)(y)=C
.

n=0

qn
2

(q2; q2a+2; q2)n
1x
y
22n C

n

k=−n
(−1)n−k Uk(n) f(qky). (70)

Remark. If a=−1/2 we have Uk(n)=q−n
2+n+(n−k2 )(q; q)2n/(q; q)n−k

(q; q)n+k, and T
−1/2
x f(y) is the q-even translation studied in [8].

Let us now show that the q-generalized translation Tax, (70), can be
written with the help of the q-transmutation operator.

Proposition 5. Let f ¥Dg, q and T
−1/2
x be the q-even translation [8].

Then the q-generalized Bessel translation is related to the q-transmutation
operator by

Taxf(y)=qa, q, xqa, q, y(T
−1/2
q, x q

−1
a, q, y(f)(y)), (71)

where qa, q and q
−1
a, q are given respectively by (59) and Theorem 3.
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Proof. The q-Bessel translation can be rewritten

Taxf(y)=C
.

n=0
bn, a(x; q2) D

n
q, a(f)(y)

=C
.

n=0
qa, q, x(bn(x, q2)) D

n
q, aqa, q, y(qa, q, yf)(y),

=qa, q, xqa, q, y(C.n=0)bn(x; q
2) Dnq(q

−1
a, yf)(y).

Taking into account the definition of the q-even translation T−1/2q (see [8])
the result follows.

We prove the following properties as in [8].

Proposition 6. (1) The q-translation operator Tax is a solution of the
following q-hyperbolic problem,

Da, q, xu(x, y)=Da, q, yu(x, y) (72)

u(x, y)=f(x), f ¥Dg, q (73)

Dq, xu(x, y)|(x, y)=(0, 0)=0. (74)

(2) The following q-product formula holds:

Taxja(y, q
2)=ja(x, q2) ja(y, q2). (75)

For f, g ¥Dg, q we define the q-Bessel convolution by

f aa g(x)=
(1+q−1)−a

Cq2(a+1)
F
.

0
Taxf(y) g(y) y

2a+1 dq y. (76)

It satisfies

qa, q(f a−1/2 g)=qa, q(f) aa qa, q(g), (77)

where a−1/2 design the q-even convolution [8].

6. q-BESSEL FOURIER TRANSFORM

In the following we suppose ln(1−q)ln q) ¥ Z and denote by L1a(Sq, x
2a+1 dqx)

the space of functions f such that >.0 |f(x)| x2a+1 dqx <+..
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For f ¥ L1a(Sq, x
2a+1 dqx), we define the q-Bessel Fourier transform by

Fa, q(f)=
(1+q−1)−a

Cq2(a+1)
F
.

0
f(x) ja(lx, q2) x2a+1 dqx, l ¥ Sq. (78)

We summarize here some of its properties which are easily deduced from
the results shown before.

Proposition 7. (1) For f ¥ L1a(Sq, x
2a+1 dqx) and l ¥ Sq we have

|Fa, q(f)(l)| [
1

(1−q)1/2 (q; q).
||f||. (79)

(2) IfF is the q-cosine Fourier transform [8], then

Fa, q=F p tqa, q, (80)

F=Fa, q p
tq−1a, q. (81)

(3) For f, g ¥Dg, q we have

Fa, q(f aa g)=Fa, q(f)Fa, q(g); (82)

Fa, q(T
a
xf)(l)=ja(lx, q

2)Fa, q(f)(l), l ¥ Sq. (83)

(4) For f ¥Dg, q, we have

Fa, q(Da, qf)(l)=−
l2

q2a+1
Fa, q(f)(l). (84)

7. APPLICATIONS

We conclude this work by giving two applications of the q-Bessel Fourier
transform. We begin by recalling the two q-analogue of the exponential
function.

E(x; q2)=(−(1−q2) x; q2).=C
.

n=0

(1−q2)n

(q2; q2)n
qn(n−1)xn, x ¥ R (85)

e(x; q2)=
1

((1−q2) x; q2)
=C

.

n=0

(1−q)n

(q2; q2)n
xn. (86)
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For the convergence of the last series we need |x| < 1/(1−q2); however,
because of its product representation e(x; q2) has an analytic continuation
to C0{q −k/(1−q2), k ¥ N}. They satisfy e(x; q2) E(−x; q2)=1.

7.1. q-Weber Integral

The classical Weber integral [24] can be rewritten as

F
.

0
e−a

2x2ja(bx) x2a+1 dx=
2aC(a+1)
(2a2)a+1

e−
b2

4a2 dx

where ja is the Bessel function (1), a > 0, b > 0, and a > −1. The previous
relation is the Bessel Fourier transform of e−a

2x2. To look for its q-analogue
we first evaluate by the Ramanujan identity [13] the q-integral

1
Aa

F
.

0

x2n+2a+1

(−(1−q2) x2; q2).
dqx=q−(n

2+n+2na) q
2a+4; q2)n
(1−q2)n

,

where Aa=>.0 (x2a+1/(−(1−q2) x2; q2).) dqx, which is estimated by the
same identity (see [8]).

Proposition 8. For a, l ¥ Sq, we have

1
Aa

F
.

0
e(−a2x2; q2) ja(lx; q2) x2a+1 dqx=

1
a2a+2

e 1− q
−(2a+1)

a2(1−q)2
l2; q22 .

(87)

The last equality is the q-Weber integral.

7.2. q-Heat Bessel Polynomials

We consider the two q-parabolic problem

Dq, au(x; t)=Dq2, tu(x; q−2t) (88)

Dq, au(x; t)=Dq2, tu(x; t) (89)

We add to these q-equations the following conditions

u(−x; t)=u(x; t) (90)

u(0; t)=f(x), f ¥ L1a(Sq, x
2a+1 dqx). (91)

Dqu(x; t)|(x, t)=(0, 0). (92)
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The relations (88) and (89) are the q-analogue of the classical Bessel heat
equation [9, 11, 13]. In many fields an important role is played by the
q-solution source also called the q-heat Bessel kernel which can be
constructed as follows.
Putting

U(l; t)=Fa(u(.; t))(l)

then (87) and (90) become respectively

Dq, tU(l, t)=−
l2

q2a+1
U(l, t)

and

U(l, 0)=Fa(f)(l).

The resolution of this last q-differential equation leads to

U(l, t)=e(−l2q−2a−1; q2)

We define the q-solution source by

Fa(G(., t; q2)=e(−l2q−2a−1t; q2)

and by Proposition 8 we have

G(x, t; q2)=
e 1− −x2

(1+q)2 qt
; q22

Aa(t)(1+q)2a+2 (qt)a+1
. (93)

The solution of the q-Bessel heat equation is

u(x; t)=f aa G(., t; q2)(x).

When q tends to 1− the function G(x, t; q2) tends to the heat Bessel kernel
[11].
To define the q-heat Bessel polynomials, we observe that

lQ E(−l2q−2a−1t; q2) ja(lx; q2)

is analytic, so we deduce from (35) and (85) the expansion

E(−l2q−2a−1t; q2) ja(lx; q2)=C
.

n=0
(−1)n qn

2−n (1−q)
2n

(q; q)2n
vn, a(x, t; q2) l2n
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with

vn, a(x, t; q2)=
(q; q)2n
(1−q)2n

C
n

k=0

(1−q2)k

(q2; q2)k
qk
2−kbn−k, a(x; q2), (94)

where bn−k, a is given by (37).
The quantities vn, a will be called the q-Bessel heat polynomials. The
q-Laguerre polynomials L (a)n were studied by Moak [18] and they are
related to the vn, a as

vn, a(x, t; q2)=
(q; q)2n
(q2a+2; q2)
11+q
1−q
2n q−n(2a+1)L (a)n 1

−x2q−2n+1

(1+q)2 t
; q22 .

The classical properties of the Bessel heat polynomials and representation
theory associated with them can be extended to the vn, a and that will be the
subject of a coming work.
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